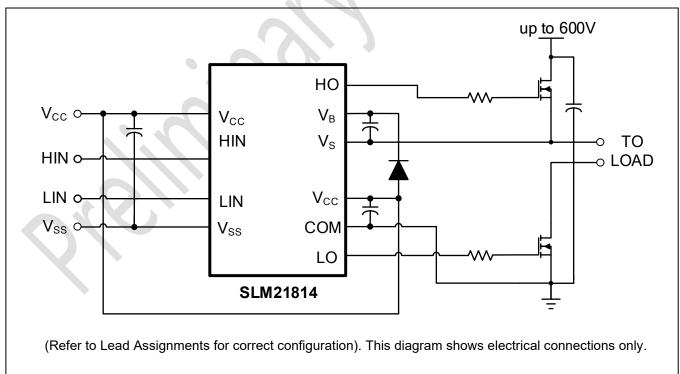


600V High and Low Side Driver

PRODUCT SUMMARY

•	VOFFSET	600 V max.
•	l ₀ +/-	4A / 4A
•	Vout	10 V - 20 V
•	t _{on/off} (typ.)	170ns / 170ns


GENERAL DESCRIPTION

TYPICAL APPLICATION CIRCUIT

The SLM2181 is a high voltage, high speed power MOSFET and IGBT drivers with independent highand low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V.

FEATURES

- Floating channel designed for bootstrap operation
- Fully operational to +600 V
- Low Vcc operation
- Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout for both channels
- 3.3 V, and 5 V logic compatible
- CMOS Schmitt-triggered inputs with pull-down
- Matched propagation delay for both channels
- Outputs in phase with inputs
- RoHS compliant
- SOIC-8 package

Typical Application Circuit

SLM21814

SLM21814

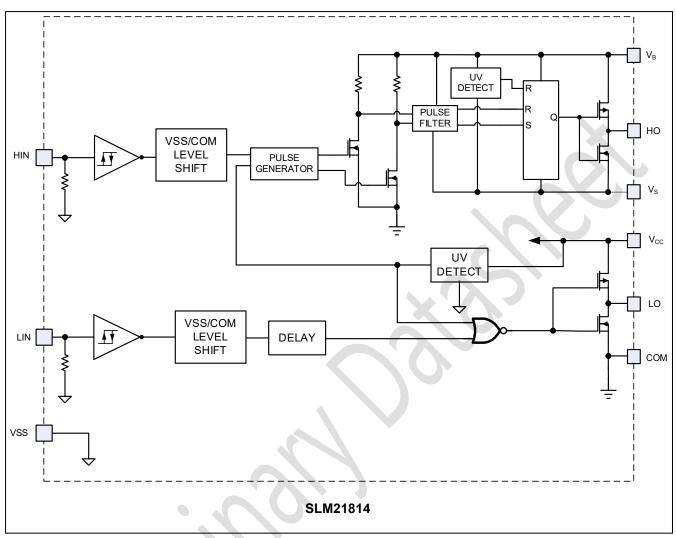
PIN CONFIGURATION

Package	Pin Configuration (Top View)	
	1 HIN NC	14
	2 LIN V _B	13
	3 VSS HC	12
SOIC-14	4 NC V _S	11
	5 COM NC	10
	6 LO NO	9
	7 VCC NC	8

PIN DESCRIPTION

PIN DESC	PIN DESCRIPTION				
No.	Pin	Description			
1	HIN	Logic input for high-side gate driver output (HO), in phase			
2	LIN	Logic input for low-side gate driver output (LO), in phase			
3	VSS	Logic ground			
5	СОМ	Low-side return			
6	LO	Low-side gate drive output			
7	Vcc	Low-side and logic fixed supply			
11	Vs	High-side floating supply return			
12	НО	High-side gate drive output			
13	VB	High-side floating supply			
4,8,9,10, 14	NC	No Connection			

ORDERING INFORMATION


Industrial Range: -40°C to +125°C

Order Part No.	Package	QTY
SLM21814CA-DG	SOIC14, Pb-Free	2500/Reel
SLM21814CA-TG	SOIC14, Pb-Free	100/Tube

FUNCTIONAL BLOCK DIAGRAM

SLM21814

SILLUMIN

SLM21814

ABSOLUTE MAXIMUM RATINGS Symbol Definition Min. Max. Units High-side floating absolute voltage 625 Vв -0.3 Vs High-side floating supply offset voltage V_B - 25 $V_{B} + 0.3$ High-side floating output voltage Vs-0.3 $V_{B} + 0.3$ Vно V 25 Vcc Low-side and logic fixed supply voltage -0.3 VLO Low-side output voltage -0.3 Vcc + 0.3 VIN -0.3 Vcc + 0.3 Logic input voltage (HIN & LIN) dVs/dt Allowable offset supply voltage transient 50 V/ns ---PDIP-8 1.0 ____ P_D Package power dissipation @ $T_A \leq +25^{\circ}C$ W SOIC-8 0.625 ----PDIP-8 125 ---°C/W Rth_{JA} Thermal resistance, junction to ambient SOIC-8 200 ----150 ΤJ Junction temperature ----°C Ts Storage temperature -55 150 ΤL Lead temperature (soldering, 10 seconds) 300

Note:

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

RECOMMENDED OPERATIONG CONDITIONS

Symbol	Definition	Min.	Max.	Units
Vв	High-side floating absolute voltage	Vs+10	Vs + 20	
Vs	High-side floating supply offset voltage	Note 1	600	
V _{HO}	High-side floating output voltage	Vs	VB	V
Vcc	Low-side and logic fixed supply voltage	10	20	v
V _{LO}	Low-side output voltage	0	Vcc	
Vin	Logic input voltage (HIN & LIN)	СОМ	Vcc]
TA	Ambient temperature	- 40	125	°C

Note:

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The V_s offset rating is tested with all supplies biased at a 15 V differential.

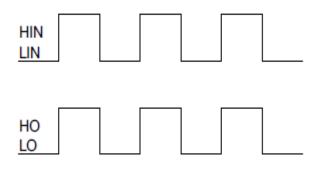
SILLUMIN

DYNAMIC ELECTRICAL CHARACTERISTICS

 V_{BIAS} (V_{CC}, V_{BS}, V_{DD}) = 15 V, C_L = 1000 pF and T_A = 25°C unless otherwise specified.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
t _{on}	Turn-on propagation delay	V _S = 0 V		130	160	
t _{off}	Turn-off propagation delay	Vs = 0V		120	150	
tr	Turn-on rise time			25	35	ns
t _f	Turn-off fall time			17	25	
MT	Delay matching, HS & LS turn-on/off				10	

STATIC ELECTRICAL CHARACTERISTICS


 V_{BIAS} (V_{CC} , V_{BS} , V_{DD}) = 15 V and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} , and I_{IN} parameters are referenced to COM and are applicable to all three logic input leads: HIN and LIN. The V_0 and I_0 parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
VIH	Logic "1" input voltage		2.5			
VIL	Logic "0" input voltage	V _{cc} = 10 V to 20V			0.8	
V _{он}	High level output voltage, V _{BIAS} - V _O				1.4	V
Vol	Low level output voltage, Vo	I ₀ = 20 mA		0.02	0.15	
I _{LK}	Offset supply leakage current	V _B = V _S = 600 V			50	
IQBS	Quiescent V _{BS} supply current	N = 0.V	20	75	130	
Ιαςς	Quiescent V _{CC} supply current	$V_{IN} = 0 V$	160	220	300	μA
I _{IN+}	Logic "1" input bias current	HIN=LIN = 5V		5	20	
I _{IN-}	Logic "0" input bias current	HIN=LIN= 0V			5	
V _{BSUV+}	V _{BS} supply undervoltage positive going threshold		8.0	8.9	9.8	v
VBSUV-	V _{BS} supply undervoltage negative going threshold		7.4	8.2	9.0	V
V _{CCUV+}	V _{cc} supply undervoltage positive going threshold		8.0	8.9	9.8	v
Vccuv-	Vcc supply undervoltage negative going threshold		7.4	8.2	9.0	v
lo+	Output high short circuit pulsed current	V _O = 0 V V _{IN} = Logic "1" PW ≤ 10 µs		4		A
lo-	Output low short circuit pulsed current	V _O = 15 V V _{IN} = Logic "0" PW ≪ 10 µs		4		

Switching and Timing Relationships

The relationships between the input and output signals of the SLM21814 are illustrated below in Figures 1, 2. From these figures, we can see the definitions of several timing parameters (i.e., t_{ON} , t_{OFF} , t_{R} , and t_{F}) associated with this device.

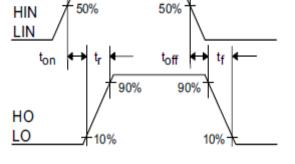


Figure 2. Switching Time Waveform Definitions

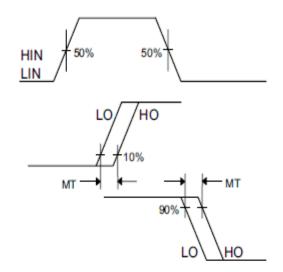
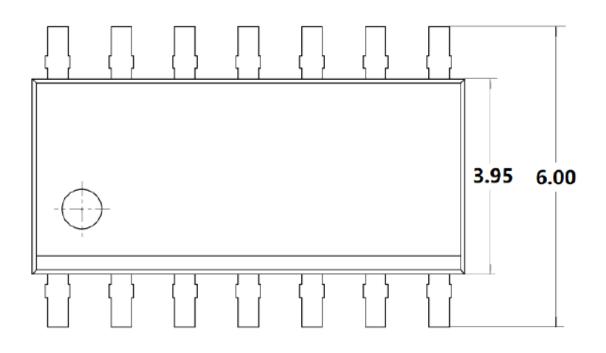
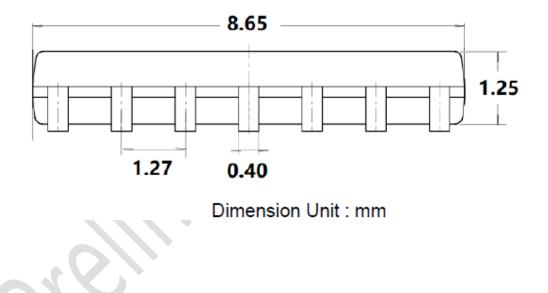




Figure 3. Delay Matching Waveform Definitions

PACKAGE CASE OUTLINES

Revision History

Note: page numbers for previous revisions may differ from page numbers in current version

Page or Item	Subjects (major changes since previous revision)		
Rev 0.1 datasheet, 2020-9-10			
Whole document Draft datasheet released			